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1. Introduction. Consider sequences of independent random variables

(X .: 1 < i < n, n > 1) with continuous cumulative distribution functionsni — — —
(cdf). A broad range of statistical tests based. on ranks lead. to the study

of simple linear rank statistics of the type

n
(1.1) S = L C . a ( R .)n xu n nJ.1=1

where R is the rank of X among (x , X , 
•
, X ) ;  (C • : 1 < i < n)

I 
~ >~ 

fl_I. fli ni n2 n.n ni — —
and (a(i): 1 < i < n) are sets of known constants. One usually assumes

~~~ 
a(i) (scores) to be generated. by a known function q,: (0, 1) —* R in

I LJJ
• j either of the following ways:

(
~~

~~~ 
(1.2) a (i)  = cp ( i/ (n+ i ) ) ,

C (1.3) a (i) = E ~p (U ’1
~ ) ,  1 < i < nn

where U~~~ is the i-th order statistic in a random sample of’ size n from a

uniform distribution over (o, i).

H~jek (l~~8) obtained asymptotic normality of the statistic Sn 
defined

in (1.1) with suitable conditions on C . and the score generating function cp.
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however, there exist situations where the C . can no longer be regarded as

constants, being themselves random variables, known as “ stochastic predic-

tors .” Corresponding to such stochastic predictors (and. the sequence

(X 1fl, we define a stochastic linear rank statistic by

(1.4)  T = ~~~~~ On
(R ni )

wherein all the quantities have already been defined.

Thi s paper is devoted to the study of asymptotic distribution theory

of the statistic T . Thus results of H~jek (1968) are a special case of

our results for T . However, as opposed to H~jek , we obtain a family of

limit laws which are weighted averages of the normal and degenerate to the

normal in extreme cases. Thus the results are also of independent interest.

In view of the rather complex nature of the conditionings involved in our

analysis, it seems rather doubtful that H~jek’ s projection technique can be

used in a situation as general as ours .

Although we take C . to be stochastic, it is clear that they cannot be

entirely arbitrary. The restrictions which we shall impose on them are of

two types. Firstly, they are concerned with their magnitudes and growth

rates of certain fractional moments , stated explicitly in the theorems.

Secondly, they are concerned with the measure theory and dependence a~~ng

themselves and with the X~~. Clearly, there is considerable latitude in

the choice of the dependence structure and one can weaken one set of

conditions by strengthening others~ We shall, however, assume only that

the X are indep endent for a given set (C .: 1 < I < n) = (C ). (Condi-ru ni — — ~n ilte Sectt~
tionaI independence.) This situation is realized when , for example, the ~ ~~~~~ 0

sequence ((X ., C .)) is composed of independent vectors. Even when they

are exchangeable, it can be expressed in present framework. BY _______
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We denote by F the cdf of X given C . (it is to be noted that F
fl]. Th

can depend upon and is , therefore, a random variable, but F
ni 

is a.s. a

distribution function.)

In view of the rather delicate nature of the conditioning needed in

our proofs , it is desirable to set down the measure theoretic framework

involved in our study. AU measures considered are, of course, probability

measures . These considerations are rather crucial in the proof of

Proposition 32 .

Let (c2 , a, P) be a measure space rich enough to admit families of

random variables C and ~~~~~, for n> 1. Let (ci 1, ~ij ,  I = 1, ~• , n be

measure spaces with respect to which (X ., C . ) ,  i = 1, • , n are measurable.

The product measurable space (U
1 x x Un~ ~l 

X x ~3) is the space of

points (
~~~, 

..., w )  together with the minimal a-field over measurable

rectangles B
1 

X X B , where B. E I = 1, .• • , n. Then the product

measurable space (flU , fl~3) is the space of points (w1, (U 2~ “), w .  E U.,

and the minimal y-field over the measurable cylinders (B
1 x x B )  x

fl Q~, n = 1, 2, •. .  denoted by %. Clearly c ci.
k=n+l

Since we shall be conditioning with respect to ~~~, we assume that the

conditional probabilities for the X given C are all measurable with

respect to 8 .  We also assume that the family (
~~~

) determines a fami ly

( Q )  of regular conditional probabilities. That is to say, for each fixed

E U., j  = 1, .., n-l, Bn E 11 8k~ ~~ (w1, “
‘ 

wn_ 1; B )  is a.s.(P)  a

measure on II and for a fixed B~~, a measurable function in

• •
~ n-i’ for all x~•
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2~ Theorems. We now turn to the statements of our theorems. Denote

(2 .1) H(x) = n L F . ( x )
nJ-1=1

(2 .2) C(x)  = 
-1/2 

1=1 
C
ni 

F
ni
(X)

~ ~ 
= J~ ~

(H(x))dC(x) .

(It is to be noted that H(x) may depend upon

Theorem 2.1 (Representation Theorem). Let the scores a~ ( i), i < i < n be

given ~~ (1.2) and let the following conditions be satisfied.

(2.3) max I C  . 1  = 0 (1)
l<i<n ~~

(2.4) I~9~’~(t)~ < K(t(l - t))
61

~~~
2
, 0 < t < 1; 1 0, 1 f~~

K > 0 and some 0 < 6 < 1/2.

Th~~
(2.5) T

n = 

~ 
+ n~~

/2 

~~ 
~(x ., C )  + D

where, for a given C ,

(2 .6) D —
~~ 0 in p~~~ability ( conditionally) as n -+ ~~.

(2.7) 
~
(X
ni~ ~~~ = n 1 

j~l 
(C
nj 

- C~ 1) J~ ~
1[x~y) - F

~~
(y))cc~

(H(y))

d F~~(y)

(2.8) i
~~<~~ 

I if x < y, and 0 otherwise .

Furthern~re, ~ ~ g~y~n Q~~, ~~~ 
conditional distribution ~f T -

is asymptotically normal, provided the corresponding val~,e of the conditions].

variance is finite and nonzero.

_ _  J
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Theorem 2,2 (Mai n Limit Theorem), in addition to the hypothesis o~’

Theorem 2 ,1, let the following conditions b.ç sati zfied.

There exists ~~ a < 1/2 , 0 < a  < a( 6) = 26(1 - 26)
_i
, 0 < ö < 1/2

such that

(2.9) E( max I C ni I
2
~~~

<
~~) =

1<i<n

and the family (~ç,~) determines ~ f amily c
~ n~ 

of regular conditional

• probability measures in the sense described £~ section 1. W~~ th~~u ~~~~

the representation (2.5),

(2.10) D
n 

—
~~ 0 in p~robability (unconditionally) as n —

~~ + and

(2.u) T has a limit distribution ~i ~~~ ~~ t~~ jpint distribution

2of ~.& and the conditional variance 0. (C ) ,  ~~y Wn(~~ 
) converge

weakly ~~ a proper distribution function W ( ,  • ) •

Furthern~ re, this limit law ~~ weighted normal whose characteristic

function is given by

22
(2 .12) f~

(u) = $ exp(iux)d ~~(x) = $ exp(i~~ - ~—~— ) dW(~~, 0.2 )

It must be noted that in the joint distribution of (~~~, 0.
2
(e)), it may

be necessary to normalize p, by a sequence of constants (say V = E p . ) .

Since this does not affect our analysis (we could consider T - y ) ,  we

shall disregard it.

Theorem 2 ,3 (Normal Convergence.~~ Under the conditions ~~ Theorem 2 .2,

~~~ limit ~1.aw ~~ T~ ~~ normal ~~ ~~d only ~~ t~~ law W ( . , ) is degenerat e
2 2

~~~~ (p .0, a0) ,  
~~ ~ 0.

it is obvious that In general the fo rm of the limit law given by

(2 .12) can be quite complicated . it is possible to get a clearer idea of

• • •~~~~T~~~ • •~~~ ••



the kina o~ distributions which arise by looking at T - p . .  (Note that in

the unconditional case p. is stochastic .) With this point in view, we give

the following corollary and an example.

Corollary 2 .1. Under the conditions of Theorem 2 .2, T - p. has a limit law

~~~ th~ conditional variance ~
2

( C )  converges in distribution to

a proper random variable wi~~ distribution W ( . ) .  fl~~ ~~~~~ J~~~ ~~

symmetric weighted normal 
~~~~‘ 

(~~ y) with the characteristic f~pction

(2.13) g~ (u) = J exp(- 1/2 u
2
a
2
) dW(~

2) .

Example. In Corollary 2.1, let 0.
2 
have an exponential distribution. Then

2 2  2 2
g~ (u) = exp (- ~~q~_) e~~ 

~~2 
= (1 + 

u )
_l

Inversion of ~~ by the Fourier-Stieltjes inversion formula yields the

distribution with the density

(2 .14) ~~ (x) 2 1/2 exp (_21/2 ‘xI ) - < x < + ~~.

Thus , the form of can differ quite drastically from the normal .

Remark. We note a “ nonuniqueness” in our main results. (Theorem 2 .2 ;

Corollary 2 .1.) In contradistinction to most of the limit theorems in

stati stical theory , we do not have a single limit distribution but a family

of limit laws “parametrized” by the di stributions W( ) .  It would be

interesting and valuable to know what all distributions can arise. Equiva-

lently, what distributions can be characterized at weighted normal.

Proofs of these results are given in Section 3. Similar results

hold when a
n
(i) are given by (1.3) . Our conditions appear to be broad

enough to cover most practical situations. But the condition (2.9) can

prob ably be weakened .

~ 

~~~~~~~~ ~~~~~~~~ ..- ~-~-• -~~~-- •. ..
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~~ . ~roo~ s of the Theorems: We introduce the following processes:

(3. 1) C (x) = ~_l/ 2 

i~ l 
C . ‘[Xni < xj ’  C(x) = E ’[C (x) J

(3. 2) Hn (X) = n 1 

i~ 1 
‘[ X i  < ~~~~~ 

H(x) = E’[H (x)]

E ’[~~] denotes E[( )~~~~].

The following stochastic inequalities are obvious :

(3.3) I~~~(X) 1 < n~~
’2 max ~C .~ H (x)

l<i<n
and

(3.4) tC(x) l < 1/2 max ~c .~ HCx a s .
1<i<n ni

Since the conditioning is with respect to ~~~, inequalities and bounds

hold a.s. Also note that H(x) and F . (x)  are a , s. d.istribution functions.

For the sake of brevity, we shall suppress the notation a.s.

We regard C (x) as a random measure which assigns a weight C . to the

point x = Xni

Proof of Theorem 2 .1. From (1.2 ) ,  (1.3) and (3.3), it follows that

n R . .~~~ n H ( x )
(3,5) T~ 

_l/2 

i~1 
c
r~ 

~~~~~~ 
~ ~~ n~l 

) d C (x)

p. + B  + B  + E D~n ~~ 2n ._
~~~ 

in

where is g...1en by (2 .2) ,

(3.6) B~~ = j ~ (H(x) ) d[ C~ (x) -

(3.7) B2 = J [H (x) - H(X) ]cp ’ [H(x)]dC(x)

_____________________________________
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(3.8) = 

~~~ 
H~ (x)  cp ’LH (x)idC~ (x

(3 .9) D~ = [H (x) - H(x ) ]~p ’ [H(x) ) d[C
n

(X) - C (x))

n H ( x )

(3.10) D = J (cp [ 1 H (x ) J - cp [H(x) ] - ~ 
- H (X))CPt [H(Xfl)dC

n
(x)

~
3n -

~~~

We shall first show that p. is well defined .

= ~ ni J cp [H(x ) J d  F ~(x) I < n u/2 max 
~
C . J Icp[H(x)]I dMx)n i=l”[n -~~ 1<i n ~~ -~~

Since the integral is finite (by (2 ,4 ) ) ,  p. is a proper random variable.

Integrating B2 by parts , we obtain

(3.11) B2 = [H n (X) - H(x) ]B*(x)~~~ - 

~: 
B*(x)d{H (x) - H(x) ]

where

B*(x)  = j
X 

cp’[H(y)JdC(y), x0 chosen arbitrarily such that H(x
0
) ~ 0.

x0

Let ~(x) = [H (x) - H(x ) ]B
*
(x) . Then

nV2 t u ( x) - H (x) 1n 1/2 1 j
x 

p’[H(y)]dC(y)~
x0

~~O~ ( l) fl l/2 1H (x) - H(x)~ ii ~ ‘ {H(y) J dH (y ) ~~,
x0

~ 
Op ( l)fl’/2 t H n

(X) - H( x)~~(H( x)(1 - H ( x ) ) ) 6 h/2 . K ,

Now by Pun -Sen ( 1971) , given c, 8’ > 0, there exists a constant C(c , o ’) ,
such that

(x) -

P(sup n 
l’2 ‘ 

> c(€ , s ’) )  < c.
x (H(x) (l-H(x))) I’
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U

Choosj~g ~,
‘ < 5 , it follows that

~~(x)~ ~ K 0~(i) (H(x)[l — H(x)j)6 8  c(c , o ’ )  0

as x -. -i- ~ for a fixed ~~~. Unconditional convergence follows from

Proposition 3.2 given a little later. Thus from (3.6), (3.7), and (3.11),

we note that

+ B2 = J ~[H(x)Jd[C (x) - C(x)] + ~‘{H(x)][H (x) - H (x)]dC(x).

Integrating B~~ by part s and collecting the coefficients of

< 
- F . ( ’) ] ,  we obtain the desired representation (2.5). Let now

ni— 3
C = C’ be given . Then by Puri-Rajaram ( 1977) , it follows that L D . -. 0

in probability, provided max is bounded , which by assumption (2 .3)
l<i<n

remains so with probability close to 1. The unconditional convergence is

established in Proposition 3.2 . To prove conditional normality, we verify

the Liapunov condition. For simplicity, let us denote

(3. 12) 
~ni 

~
_i/2 

~(X ., C).

For conditional normality, it suffices to prove

(3.13) lim E E’IY 1
2(1+cz) 

= 0 for some a > 0.
n—~ i=1

Denote

(3.14) E( l2~
) = E ’ ( . ) .

We obtain more than (3.13) in the following lemma , It will be needed

to obtain the unconditional distribution of T .
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Lemma 3.1. Under the assumptions of Theorem 2.1,

(3.15) E E’LY ~2(l+a) = O(n
’
~~) max 1c 1

2~ M~ a, s.
i=1 n l<i<n

for each a, 0< a < a(ô) = 26(1 - 26)
_i

, where 8 is given in (2 ,4) .

Proof. We shall estimate the orders of magnitude for the terms of B~~ and

B2n separately, and then use the C~ _ine~~ alitY. Recall that

* 1 n 
* *(3.i~) B2 = J B (x)d[H (x) - H(x) ] = n E (B (x .)  - E’B (X .)).

Take 0< a <a(o). Then 2(1 + a)(~ - 1/2) > -1. Next

(3.17) 

~ 

Et [n B *(X i)]
2(1

~~

< n
2(1

~~~ 
~ J I ~~[H(y)]dC(y)~

2(1~~~ d F .(y)
i=l -~~

<~~-2(l~~) ~ (nl/2 max I c~1I)
2
~’~~ ~~

. ~.X 

~~~~~~~~~i=1 l(i<n -~~~

dF (y)

< max j C ~ I
2(1

~~~~~~
1
~~~ E J (k[

~~
)] t +

1<i<n ~ i=1
dF .( y)

= max ~C . I
2

~~~~~ n~~ 
J. (~cp[H(x))~ + I p[H(x0)iI)

2(1
~~~dM (x)

1<i<n -~~~

< n’~ K mai~ I C . I
2( 14

~~ J’
l~i~n

= 0(n~~ ) max t c~~I
2
~~

<
~~, since the integral is finite and

l<i<n

cp [H(x
0
)] is constant.
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Since E’IB (X .)I
2
~~~~ > IE’B~

(X
~j ) 1 2

~~~~ a.s. we can use the

C -inequality for (3.16). Similar arguments hold for B~~~, and an applica-

4 tion of the C -inequality yields the estimate (3.15). The Le ia is proved.

Remark: Since max . is 0 (1) , it is obvious that the (conditional)
i<i<n ~~ p

asymptotic normalit~y holds for each uniformly bounded set of values C ,

provided the corresponding value of the conditional variance converges to a

finite, nonvanishing constant.

Proof of Theorem 2,2, We shall obtain a generalization of Theorem A ,

page 381, lo4ve ( 1963) . Let
2

a (C ) = Var(Y . I C )ni ~~~~ ni n

and

(3. 18) U~~ = ~(X ., C )  + p ..; p . .  = n V2C~ . J ~(H(x) d F .(x).

it is easily verified that

(3.19) Tn = ~J ‘
~
‘ni + D~ = U~ + D

n~ 
say.

To obtain the asymptotic, unconditional distribution of U , we use the

comparison theorem on pages 375-376 of Lo~ve ( 1963) . Choose random variables

V ., conditionally normal, with

E’ ( V . ) = p .  , Var ’(V . ) = a 2 . ( C ) ,
fli fli ni ni —n

Letting
n

v = E v .
• n

we shall compare V~ and U , taking S = R, £ = 0, m = 2,

For j < m , we have E ’U~J~ = E’ Vs.. For higher moments of V~~, we shall

bound them by the moments of V .  as follows.

• ‘ - • . ,  • ‘ 

‘
~~~~
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~inc~ V . are conditionally normal with par ameters p . .  and

given V > 0,

< 2~~
’ (E’LV . - p. I

2+
~ + 1p . 1

2+Y) a.s.

It is easy to check (by normality)

E’IV _ p. 1
2+V = (a .(C ))2+V a.s.ni ni n i n

Consequently, we have

(3.20) E ’ L V .~~
2
~~

’ < C E’I U .I
2
~~ 

a.s.

Next , in the comparison theorem, since L = 0, S = B, we need only

verify conditions (iii and (iv), (Lo~ve, p. 376).

Note that J x~ d~i
’.(x) = J x~ dç.(x), j = 1, 2 where is the

conditional distribution of U - and q’. that V .,  Henceni ni ra

(3.21) 
i~l 

E ~J x3 (dp ’ .(x)  - dq~.(x))~ = 0.

Choose in condition (iv) of the comparison theorem, 6 = ar < 1, a given

by (2.9). Using the bound obtained in (3.20), we have

E 

~R 
~~ -

< E((1 + C) 
i~1 

E’lU .~
2
~~~~~)

= (1 + C) E( max ~C . I
2( 1

~~
) ) O(n~~)

l<i<n

-. 0, as n + ~~

by condition (2.9), lemma (3.1) and the Ce
_ inequality.

n n
Thus E U - and E V - are asymptotically equivalent in law. N ext ,

1=1 
fli 

i=l n
to obtain the characteristic function of V = E V .,n - ni
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f (u) = E exp(iu V )  = E E’ exp ( iu V )

- 1 2 2
= E exp (iu p . - u 

~

Let w~( . , .) be the joint distribution of (p.s, a~(~~
)) .

We then have

(3,21) f (u) = J exp (iu p. - ~ u
2 
a
2
) d W(p., a

2
)

which by continuity theorem converges to a characteristic function f.~(u)

(say) if and only i 1W~ ( ,  ) converges weakly.

It remains to show that the remainder terms all converge in

probability unconditionally. Recall that conditional convergence has been

established in Theorem 2 .1. Thus the proof of Theorem 2 .2 will be complete

if we prove the following:

Proposition 3.2. Let (Q~) 
be the family of conditional probabilities

determined by (C). Let this family be regular with respect to (Q, a) . ~~
the conditional ~~obabi1ity P(ID > 6 I~

) -. 0. It max I C j  = 0 (1) ,
l<i<n ni p

then P ( 1D  > 6) -. 0 unconditionally.

Proof. Let V be the probability measure determined by C . Then
n

(~.2o) P(~D J  > 6) = J P ( I D I > 8 I~
) d v .

Now , given € > 0, there is a constant K such that P( max 
~~ 

.
~~ 

> K) < c.
1<i<n

Now

j P ( I D I  > oIc )dv J P( I D I > oI~~
)dv

~

max I C~~I 
< K )

l<i<n
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+ P(~ D ~ 
> Ô I~ 

) dv
a ~ a

[ max I C . I > K ]
l<i<n

< I P ( I D I > o I C ) d v  +~~~
.1 n ~‘n n

[ max I C  .~~ <K) .
1<i<n

Setting

(3, 21) 
~n ,ô = P(ID~I > ~ l~r) I [ max 

~~~~ ~ 
K)

l<i<n

and noting that u r n  
~n o = 0 a.s., it suffices to prove that

‘

lim It dv = 0 .l J n on-.+~
Since (Q~) 

forms a family of regular , conditional probabilities in

the product space, An E B1 X X B

~~ ( A )  = J. 
~~~ J ~~~~~ ~~~ 

“ $ Q~(w 1, 
~~~~ ~~~~~

Then by a theorem of Ionescu-Th.lcea (1949, 50), (see also Lo~ve (i963),

p. 137), there is a probability measure Q on ~~0, determined by Iv), and

so by the generalized Fatou Lemma, u r n  J’ f~~6 dv~ S $ u r n  su~ f~~ 6 
dQ = 0.

The proof is complete.

Clearly, the proof of Theorem 2.3 is trivial. Proof of Corollary 2.1

follows along similar lines , by a direct application of Theorem A , page 381

of Lo~ve (1963).
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4 . Some ~~tensions: We first obtain an extension of our results of

Section 2 when the scores are given by (1.3,.

Proposition 4.1: Let the hypotheses of Th~prems 2.1 and. ?~~ ~~ satisfied.

~~ addition, cp be t~~ inverse ~~ ~ cdi. L~~ T ~~ defined ~ before

but with the scores now given ‘
~y (1.3). Then the ç~~clusions ~~

Theorems 2.1, 2.2, and ~~~ as well those of Corollary 2.1 hold.

* 1/2 ~
Proof. Denote Tn = a L C . a (B .)  with a~(i) given by (1,3). We

i=l ra a
have to prove

(4.1) T~ - T
* -. 0 in probability.

Since max I C I = 0 (1), it suffices to prove that
1<i n ~~ p

(4.2) P ( I T - T*I > oI~~
) 0.

Then Proposition 3.2 entails (4.1). But (4.2) is an immediate

consdquence of Puri~ Rajaram ( 1977), whenever max 
~~~~ 

is bounded, which
1<i n

is valid on a set of probability close to 1.

We now indicate a multivariate extension of some of our results .

Usually extensions from the univariate to multivariate situations are fairly

straightforward in vi ew of the Cram~r-Wo1d criterion. Since our limit law-s

can be noninormal , it is not immediately obvious how Theorem 2 .2 would extend

in a multivariate setup. We limit ourselves to an extension of Theorem 23.

• Let
~~~~~= 

(x~~ 
... ,X(P~, n > 1 , i =  1, “‘,n b e a sequence of

p-variate random vectors (p > 1), with continuous cdf .’ s Fni(
~~

) ,  1< i < n ,

~ E R~ , Let ( C . : 1 < i < n) be the sequence of stochastic predictor

variables . As before we assume the vectors to be conditionally

independent , given (~Q~ ) .  Consider now the statistics T’ = (T (1
~ .

~~, ~~~~~
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T~’~ 
i~ l fli ~~~~ (R~~~ ) where the a(V ) ( i )~~s are given as ix.

Section 1, and satisfy the assumptions of Theorem 2 .1. Clearly , each

T(V ) 
p.

(v can be expressed as a partial projection on and C by

Th~~rern 2 .1. Let the conditional va.riance-covariance matrix of

(~~
1) (x~~ C ), “‘, ~~~ (X~~~ ce)) where

~ (~v) (X~~ C) = n
_hhl’2 E ~~~~~~~ (X~~~, C )  be given by ~~~( C ) .  Let

p.
(v) ~(v) 

~~~~~~ ~) be defined in the usual manner (cf . Theorem 2,1). Then

we have

Theorem 4 .1. Let cp and satisfy conditions of Theorem 2.1 ~~~

~~~~~~~ 
‘~~ 

(2 -) 
= where is a positive definite (nonr and~~i) matrix. Th~~

- ~~~) is asymptotically normal with mean 0 and covariance matrix E0.

The proof follows by using Theorem 2 .1, Cram~r-Wo1d criterion, extended

c - inequality and Lemma 2 .1.

I
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